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A B S T R A C T

An online diagnostic module for condition monitoring of two series-connected photovoltaic panels is presented.
The technique is based on firstly perturbing the terminal voltages and currents of the panels with a switched-
inductor circuit, which can also be used for differential power processing, to obtain the large-signal dynamic
current-voltage characteristics of the panels. An evolutionary algorithm is used to estimate the intrinsic para-
meters of the panels from the time series of the sampled panel current and voltage. The conditions of the panels
are monitored by observing the long-term changes in the extracted intrinsic parameters. Prototype data ac-
quisition module for studying the conditions of solar panels of different technologies (amorphous and crystalline
silicon) with different degrees of damage has been built and evaluated. Results reveal that the estimated intrinsic
parameters from large-signal dynamic characteristic correlate with the observed health status of the tested
panels. Theoretical predictions are favorably compared with experimental measurements.

1. Introduction

The photovoltaic (PV) energy is the fastest growing renewable en-
ergy resource for the past several years (Deline et al., 2016). The
growing penetration means more grid-connected PV power plants
where the efficiency and reliability are the priorities.

The necessity of understanding the risk management in PV power
plants has been recognized and studied (Ahadi et al., 2014;
Sangwongwanich et al., 2018). In Sangwongwanich et al. (2018), the
degradation of PV panels is discussed as complex nonlinear process
heavily influenced by local environmental conditions. As discussed in
Ahadi et al. (2014), the PV panels are the third most likely cause of the
malfunction in PV power generation. Therefore, the ability to evaluate
the health status of PV panels in time is a necessary condition for en-
suring reliable PV power generation.

PV panel datasheets often include parameters, such as open-circuit
voltage, short-circuit current, temperature coefficients and maximum
power point. Analytical methods (Humada et al., 2016; Ma et al., 2019;
Yahya-Khotbehsara and Shahhoseini, 2018) utilize these parameters to
develop lumped models capable of reproducing the voltage-current (I-
V) characteristic of PV panel. However, the inevitable degradation
process causes deviations in the data provided by the datasheet.
Therefore, the data acquisition and underlying analysis needs to be

performed on a regular basis.
Conventional data acquisition methods require an acquisition of the

static I-V characteristic. This is achieved by slowly varying the oper-
ating point of the PV panel while sampling the terminal voltage and
current. This process is often performed by external devices or by the
central inverter, which makes it time consuming and affects the power
generation process.

In Cotfas et al. (2016) and Panigrahi et al. (2016), impedance
spectroscopy (IS) is used to acquire AC parameters of PV cells from the
dynamic response. The dynamic response can be obtained in a fraction
of a second, as the perturbation frequencies are relatively high. How-
ever, the method requires an expensive test setup to conduct mea-
surements on disconnected PV cells, thus interrupting power genera-
tion.

Differential Power Processing (Qin et al., 2015; Shenoy et al., 2013),
as one the latest advancements in boosting the efficiency and reliability
of PV power plants, equips the PV string with DC-DC converters parallel
to the PV panels. These converters process the power mismatch among
the individual panels, enabling the panels to work at their respective
Maximum Power Point (MPP). As a direct consequence, the DPP con-
verters can control the operating point of the PV panels.

Altering the control software of the DPP module enables to perturb
the terminal voltage of the connected panels at an arbitrary frequency.
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Given shorter acquisition time diminishes the disruption of power
generation process, a high frequency is preferable.

At high frequencies, the I-V characteristic exhibits a hysteresis like
behavior. This is due to the p-n junction capacitance intrinsic to the
material. In Kim et al. (2013) and Suskis and Galkin (2013), a model is
proposed based on single-diode static model including a parameter
representing the dynamics, adding the capability to reproduce the
hysteresis loop.

The estimation of intrinsic parameters can be formulated as an
optimization of the model parameters, such that the model’s prediction
matches the measured terminal voltage and current of perturbed PV
panel. The nonlinearity of the model and possibility of multiple local
optima makes the problem well suited for evolutionary algorithms.

In Wang et al. (2014) and Askarzadeh and Rezazadeh (2011), a
Modified Particle Swarm Optimization (m-PSO) is proposed for esti-
mation of intrinsic parameter problems of batteries and fuel-cells, re-
spectively. A regular PSO is an elitist evolutionary algorithm with a
shortcoming of possible premature convergence into local optima. The
m-PSO rectifies the shortcoming by including an additional exploratory
action, which enables to “jump out” of local optima, thus potentially
preventing premature convergence.

On the other hand, non-elitist evolutionary algorithms possess a
greater exploration capability often used in multi-objective

optimization for locating Pareto-Optimal front (Deb, 2011). In (Nawaz
Ripon et al., 2007), a Real-coded Jumping Gene Genetic Algorithm
(RJGGA) is proposed. It is based on common Genetic Algorithm for
continuous domain, which has been successfully used in single-objec-
tive (Ishibuchi et al., 2006) and multi-objective (Ono et al., 2000) op-
timization. The RJGGA offers two hyper-parameters, which govern the
exploration and exploitation rate.

The novelty of the proposed system for diagnostics of PV panels is
the use of DPP hardware to perform the data acquisition within milli-
seconds, such that it can be performed online, without disconnecting
the PV panel. This is achieved by alteration of DPP module’s control
software, which enables to perform a large-signal voltage perturbation
at high-frequencies, where the I-V characteristic exhibits a hysteresis
loop. This enables to perform the data acquisition in time period neg-
ligible to power generation process and estimate static and dynamic
parameters.

The presented work builds on previous work (Garaj et al., 2019),
which introduced the concept of DPP modules for data acquisition. The
current work extends the method proposed in (Garaj et al., 2019) by
studying the impact within a PV string. The results are further extended
by experimental verification using solar panels of different technologies
in controlled and outdoor conditions.

Furthermore, a comparative convergence study of two quasi-

Nomenclature

αMPP sc oc/ / quantity α at MPP/short-circuit/open-circuit point of I-V
char

Blim maximum number of particles θB
Ck k-th capacitor
Csh junction capacitance
d duty cycle ratio
D averaged duty cycle ratio
Db bypass diode
θ chromosome (RJGGA)/particle (m-PSO)

̂θ parent chromosome
θB perturbed particle
Θ population of chromosomes (RJGGA)/particles (m-PSO)
Ī large-signal / filtered (neglecting switching noise) current
I0 reverse saturation current
Ip current measured passing through PV panel
Iph photovoltaic current
J parent pool size
K k

min
( ) /K k

max
( ) minimum/maximum of k-th element ofθ

L inductor
M population size
N μ σ( , )2 normal distribution with mean μ and variance σ2

ηc RJGGA parameter of crossover function β u( )
ηm RJGGA parameter of mutation function δ u( )
p random number
pc probability of performing crossover operation
pj probability of performing jumping operation
pm probability of performing mutation operation
φ k( ) k-th element ofθ
Φ fitness function value
Φc cumulative fitness value
Φr relative fitness value
Rs series resistance
Rsh shunt resistance
Sk k-th controlled switch
V̄ large-signal/filtered (neglecting switching noise) voltage
Vp voltage measured at PV panel terminals
vT thermal voltage

Fig. 1. Photovoltaic panel diagnostic system.
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random search algorithms, the m-PSO and RJGGA, is used to investigate
the presence of local optima within the objective function space.

The rest of this paper is organized as follows: In Section 2, the
overview of the proposed diagnostic system, hardware of the proposed
DPP module for data acquisition and the single-diode dynamic model of
a solar panel is introduced. In Section 3, the estimation of intrinsic
parameters of a solar panel from the acquired voltage and current time-
series is detailed. An analysis of the presence of local optima using m-
PSO and RJGGA is performed. In Section 4, the performance of the
proposed diagnostic system is investigated in simulation and verified by
a set of experiments. Finally, Section 5 concludes the major findings.

2. Operation of the diagnostic module

A photovoltaic panel diagnostic system for monitoring the condition
of two series-connected solar panels is shown in Fig. 1. It consists of
three main components, including Data Acquisition Module (DAM),
Control Module, and off-site data storage system. The DAM commu-
nicates with the control module via ZigBee wireless communication
technology and the control module is connected to the data storage
system via 4G LTE. Each DAM is connected to two series-connected
panels. It firstly perturbs the terminal voltages and currents of the pa-
nels with a switched-inductor-based circuit, as shown in Fig. 2, to ob-
tain the large-signal dynamic current-voltage characteristics of the pa-
nels and then applies an evolutionary algorithm to estimate the intrinsic
parameters of the panels with the time series of the sampled panel
voltages and currents.

As shown in Fig. 2, each panel has a bypass diode Db connected
across its terminals for dealing with partial shading condition (Ishaque
et al., 2011; Patel and Agarwal, 2008). The switched-inductor circuit
consists of two switches, S1 and S2, and an inductor L. The capacitors, C1
and C2, provide low-impedance paths for the high-frequency currents
generated by the switched-inductor circuit to circulate. S1 and S2 are
operated complementarily. The first topology - Topology 1 with S1 on
and S2 off is illustrated in Fig. 3(a). The second topology - Topology 2
with S1 off and S2 on, is illustrated in Fig. 3(b). For simplicity, Db is
neglected in the following analysis.

In Topology 1,

=L di
dt

v ,L
P1 (1)

= − −C dv
dt

i i i ,P
P string L1

1
1 (2)

= −C dv
dt

i i ,P
P string2

2
2 (3)

where vP1 and vP2 are the panel voltages of P1 and P2, respectively, iP1
and iP2 are the panel currents of P1 and P2, respectively, and iL is the
inductor current.

In Topology 2,

= −L di
dt

v ,L
P2 (4)

= −C dv
dt

i i ,P
P string1

1
1 (5)

= − +C dv
dt

i i i ,P
P string L2

2
2 (6)

Let d be the duty cycle of Topology 2 and its average value is D,

= − −L dI
dt

D V D V
¯

(1 ) ¯ ¯ ,L
P P1 2 (7)

= − − −C dV
dt

I I D I
¯ ¯ ¯ (1 ) ¯P

P string L1
1

1 (8)

= − +C dV
dt

I I D I
¯ ¯ ¯ ¯P

P string L2
2

2 (9)

where V̄P1, V̄P2, ĪP1, ĪP2, ĪL are the averaged values of vP1, vP2, iP1, iP2, and
iL, respectively, for a given value of D.

The relationships between V̄P1 and ĪP1, and between V̄P2 and ĪP2 are
operating-point- dependent. A dynamic equivalent circuit model of a
solar panel (Kim et al., 2013; Suskis and Galkin, 2013) based on single-
diode model (Humada et al., 2016; Lim et al., 2015; Silva et al., 2017) is
shown in Fig. 4. V̄P and ĪP are the averaged values of the panel voltage
vP and panel current iP, respectively. The magnitude of the current
source Iph is dependent on the strength of the incident light. The diode
Dsh, junction capacitance Csh, and resistor Rsh are used to model the p-n
junction. The resistor Rs is the series resistance.

The rate of change of vsh is

= ⎡
⎣⎢

− − − − − ⎤
⎦⎥

( )d v
d t

v V
C

I I e v
R

v V
R

( , ¯ ) 1 1
¯sh

sh P
sh

ph o
sh

sh

sh P

s

vsh
vT

(10)

Fig. 2. Circuit schematic of the diagnostic module.
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and the panel current ĪP is

= −I v V
R

¯ ¯
P

sh P

s (11)

where Io is the reverse saturation current, and =v n k T q/T id , in
which nid is ideality factor, q is the electron charge, k is the Boltzmann
constant, and T is the temperature of the p-n junction in Kelvin.

Thus, for panel P1, V̄P = V̄P1 and ĪP = ĪP1. For panel P2, V̄P = V̄P2 and
ĪP = ĪP2. The characteristics of the panel current (ĪP) – voltage (V̄P)
under different values of the excitation frequency fo and junction

(a) Topology 1. 

(b) Topology 2. 

Fig. 3. Equivalent circuit topologies.

Fig. 4. Circuit model of solar panel.

Fig. 5. I-V Characteristics of photovoltaic panel.
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capacitance Csh is shown in Fig. 5. The parameters are tabulated in
Table 1. The deviation between the static and dynamic characteristics
increases with Csh and fo. Thus, if the panel is subject to an AC per-
turbation, it is crucial to take the effect of Csh into account.

The duty-cycle D is controlled by a proportional-plus-integral (PI)
controller with feedback from a voltage sensor of a panel being per-
turbed. The control action is illustrated by rearranging (7) that

=
−

+
D

V L

V V

¯

¯ ¯
P

dI
dt

P P

1
¯

1 2

L

(12)

It is worth noting that the value of D is predominantly determined
by V̄P1 and V̄P2.

The current-voltage (I-V) trajectories of P1 and P2 when the voltage
of the panel P1 is subject to sinusoidal perturbation are shown in Fig. 6.
The data for diagnostics is acquired only for the panel following the
sinusoidal perturbation, in this case P1. A simulated example of the
time-domain waveforms of the voltage and current of the two panels is
shown in Fig. 7. Five consecutive time stamps are marked and num-
bered to relate the time development within the I-V trajectories.

3. Estimation of intrinsic parameters with evolutionary algorithm

As panel voltage and current are the only measurable electrical
quantities and the equivalent circuit (Fig. 4) is nonlinear in nature,
estimation of intrinsic parameters is difficult to be solved in a de-
terministic way. Previously, m-PSO algorithm was used in similar es-
timation of solar panel intrinsic parameters (Wang et al., 2016), but
without performance analysis. The m-PSO was also used in other
parameter estimation tasks with linear equivalent circuit models
(Askarzadeh and Rezazadeh, 2011; Wang et al., 2014), where it suc-
cessfully managed to estimate the parameters. The motivation to use
PSO-based algorithm is its simple implementation, as there are few or
none hyper-parameters that require tuning, and its fast convergence,

Table 1
Parameters of single-diode dynamic model used in the analysis.

Param. Value Param. Value

Iph (A) 1 Rsh (Ω) 350
I0 (A) 10 × 10−6 Csh (µF) 0.350
vT (V) 6 Rs (Ω) 4

(a) Panel P1. 

(b) Panel P2.

Fig. 6. I-V trajectories of P1 and P2 when the voltage of panel P1 is subject to sinusoidal perturbation.
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due to being an elitist kind of algorithm, designed for single-objective
optimization.

On the other hand, the RJGGA is a non-elitist algorithm, often used
but not limited to multi-objective optimization. The RJGGA has 2
hyper-parameters that govern the ratio of exploration and exploitation.
In the following, a detailed implementation of RJGGA is introduced. A
sweep of the 2 hyper-parameters is performed to investigate the effect
of the exploration and exploitation rate on the problem of parameter
estimation of nonlinear model from measured time series. Furthermore,
the implementation of m-PSO is mentioned and its performance is used
to evaluate and illustrate the presence of local optima.

3.1. Optimization mechanism of RJGGA

The RJGGA operates on a set of potential solutions called population.
Each individual in the population is called chromosome. Each chromo-
some comprises dimensions, which are called genes. The quality (fit-
ness) of each chromosome is measured by a fitness value, which is de-
termined by a predefined fitness function. A new population of potential
solutions is generated by performing some selection techniques with
individuals having high fitness values getting higher chances of being
selected for the reproduction operations, including mutation and cross-
over. New generations are produced iteratively until a predefined con-
vergence criterion is reached.

In the following sections, the chromosome and population struc-
tures, fitness function, reproduction operations are firstly defined and
then the steps of estimating the intrinsic parameters are outlined.

3.2. Chromosome and population structures

The parameter set G for each panel is defined as

=G I I v R C R{ , , , , , }.ph o T sh sh s (13)

The (13) forms a basic structure for chromosome
= …θ φ φ{ , , , Φ}(1) (6) , where the subset … =φ φ{ , , }(1) (6)

I I v R C R{ , , , , , }ph o T sh sh s and Φ is the fitness value of that chromo-
some. Elements of θ are bounded, such that φ k( ) ∈ [K k

min
( ) , K k

max
( ) ], where

K K,k k
min
( )

max
( ) are real numbers, setting the limits of the space, searched

for potential solutions.
A group of chromosomes form a population Θ of size M. That is,

= −θ θ θ m θ MΘ { [0], [1], . . . [ ], . . . [ 1]}. (14)

3.3. Fitness function

The intrinsic parameter estimation process is shown in Fig. 8. The
intrinsic parameters are estimated by using the time series of the
measured samples of vP1, vP2, iP1, and iP2. The intrinsic parameters are
estimated from the time series of the panel following the sinusoidal

perturbation. If the panel P1 is being perturbed, vP = vP1 and iP = iP1, if
the panel P2 is being perturbed, vP = vP2 and iP = iP2.

As the results show, the high-frequency switching noise does not
contribute to the large signal dynamics described by the equivalent
circuit model. Therefore, vP and iP are passed through a low-pass filter
to obtain the time series, V̄P and ĪP, as

= −V v v v k v N¯ { ¯ [0], ¯ [1], . . . ¯ [ ], . . . ¯ [ 1]},P P P P P (15)

= −I i i i k i N¯ {¯ [0], ¯ [1], . . . ¯ [ ], . . . ¯ [ 1]}.P P P P P (16)

Let Vsh be the time series of the voltage across Csh

= −V v v v k v N{ [0], [1], . . . [ ], . . . [ 1]}.sh sh sh sh sh (17)

Let Ipred be the time series of the panel current predicted by the
Panel Current Predictor (PCP) with V̄P as the input

= −I i i i k i N{ [0], [1], . . . [ ], . . . [ 1]}.pred pred pred pred pred (18)

The time series of the predicted panel current is calculated by a PCP
with the intrinsic parameter estimated by the RJGGA and the time
series of the actual panel voltage. Each predicted value in the series, i.e.
i k[ ]pred in (18) is calculated by the following four steps:

Step (1) For k = 0, the rate of change of vsh is assumed to be zero.
Thus,

=d v
d t

v v( , ¯ ) 0.sh
sh P (19)

Based on (10),

= − + + −I I e v
R

v v
R

( 1) [0] [0] ¯ [0] .ph o
sh

sh

sh P

s

vsh
vT

[0]

(20)

Step (2) Based on (11), the predicted value of i k[ ]pred is

= −i k v k v k
R

[ ] [ ] ¯ [ ] .pred
sh P

s (21)

Fig. 7. Voltage and current waveforms of P1 and P2 panel throughout the perturbation process.

Fig. 8. Mechanism of the parameter estimation process.
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Step (3) vsh is updated by using trapezoidal rule with the formula of

+

= ⎛
⎝

+ + + ⎞
⎠

−

v k
h dv

dt
v k v k dv

dt
v k v k v k

[ 1]

2
( [ 1], ¯ [ 1]) ( [ ], ¯ [ ]) [ ].

sh

sh
sh P

sh
sh P sh

(22)

where h is the step size equal to the sample period and the (·)dv
dt

sh is
defined in (10). Eq. (22) is solved by Newton-Raphson method.

Step (4) k = k + 1 and the process will go to Step 2 again until
k = N − 1.

The fitness of each chromosome θ in each generation gen is mea-
sured by a fitness value Φ – an index of merit. It is defined as

∑= ⎛

⎝
⎜ − −

− ⎞

⎠
⎟

=

−

θ m gen
N N

i k i kΦ( [ ], ) 1
1

( [ ] ¯ [ ]) ,
k N

N

pred P
2 1

2

1

1

2

(23)

where N1 and N2 define the start and end samples, respectively, of the
time series in calculating Φ.

3.4. Reproduction operations

Reproduction operations, crossover and mutation, evolve the chro-
mosomes over generations within the search space. The reproduction
process is in part guided by the fitness value Φ and in part random,
resulting in quasi-random search.

The two reproduction operations are described as follows.

3.4.1. Crossover operation
The crossover operation produces two offspring chromosomes,

= …θ φ φ{ , , }1 1
(1)

1
(6) and, = …θ φ φ{ , , }2 2

(1)
2
(6) from two parents,

̂ ̂ ̂= …θ φ φ{ , , }1 1
(1)

1
(6) and ̂ ̂ ̂= …θ φ φ{ , , }2 2

(1)
2
(6) with the formula of

̂ ̂= − + +φ β φ β φ1
2

[(1 ) (1 ) ],i i i i i
1
( ) ( )

1
( ) ( )

2
( )

(24)

̂ ̂= + + −φ β φ β φ1
2

[(1 ) (1 ) ],i i i i i
2
( ) ( )

1
( ) ( )

2
( )

(25)

where i = [1, 2, …, 6].
β i( ) is defined as

=
⎧
⎨
⎩

⩽

− −

+

+
β u

u u

u
( )

(2 ) if 0.5

[2 (1 )] Otherwise
i( )

ηc

ηc

1
1

1
1 (26)

where u ∈ [0, 1] is a random number.
The function of β u( )i( ) with respect to the value of ηc is shown in

Fig. 9(a). Based on (24)–(26), the larger the value of β u( )i( ) the higher
the probability of obtaining offspring chromosomes further from par-
ents. Conversely, if β u( )i( ) is close to unity, offspring chromosomes are
created close to parent chromosomes. Therefore, the variation of the
parameter ηc of the function β u( )i( ) changes the rate of exploration and
exploitation (Crepinsek et al., 2011), as illustrated in Fig. 9(a).

3.4.2. Mutation operation
The mutation operation produces an offspring chromosome

= …θ φ φ{ , , }(1) (6) from one parent ̂ ̂ ̂= …θ φ φ{ , , }(1) (6) through repla-
cing the value of a single dimension φ k( ) with the value of

̂= + −φ φ K K δ( ) ,k k
MAX

k
MIN

k( ) ( ) ( ) ( ) (27)

where ∈ …k {1, 2, , 6} is selected randomly.
The value of δ is defined as

=
⎧
⎨
⎩

− ⩽

− − −

+

+
δ u

u u

u
( )

(2 ) 1 if 0.5

1 [2 (1 )] Otherwise

ηm

ηm

1
1

1
1 (28)

where ∈u [0, 1] is a random number.
Based on (27) and (28), if the value of δ is far from zero, offspring

chromosome is created far away from the parent chromosome. Con-
versely, if δ is close to zero, the offspring chromosome will be close to
the parent chromosomes. Therefore, the parameter ηm of the function
δ u( ) relates the mutation operation and the rate of exploration and
exploitation. The function of δ u( ) with respect to the value of ηm is
shown in Fig. 9(b).

Both crossover and mutation operations are related to the rate of
exploration and exploitation through the respective parameters ηc and
ηm. The major difference between crossover and mutation operation is
the direction, in which the search space is explored and/or exploited.
The crossover creates offspring chromosomes in direction irrespective
of the base coordinate system (alters all genes in a chromosome), while
the mutation mostly creates offspring chromosomes along single di-
mension (altering single gene in a chromosome).

3.5. Steps of estimating intrinsic parameters

With the help of Fig. 10, the following steps are performed in each
generation

3.5.1. Initialization
The RJGGA starts with initializing the population size (M), size of

parent pool (J), maximum number of generations (genmax), probability
of performing jumping operation (pj), probability of performing cross-
over operation (pc), probability of performing mutation operation (pm),
and setting the generation counter (gen) to zero. The parameters in all
chromosomes are randomly initialized with the values lying within the
corresponding design limits. By using the method described in Section
3.3, the fitness values of all chromosomes are calculated.

The population size M is chosen by considering the search dimen-
sion. As suggested in (Nawaz Ripon et al., 2007), J = 25 and M = 125,
which yields 100 offspring chromosomes in every generation. The
adaption of the probabilities pc and pm can be classified into several
approaches, including static, dynamic deterministic, dynamic adaptive,
and dynamic self-adaptive (Srinivas and Patnaik, 1994). The static

Fig. 9. Functions governing the impact of crossover and mutation operations.
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approach with pc and pm fixed throughout the evolution is adopted, to
clearly relate the ηc and ηm with exploration and exploitation rate. As
discussed in (Nawaz Ripon et al., 2007), the recommended values for pc,
pm, and pj are 0.9, 0.01, and 0.15, respectively.

3.5.2. Formation of parent pool
A parent pool is formed by choosing first J chromosomes with the

highest fitness value in the population pool. Hence, J < M.

3.5.3. Jumping operation
Every parent has a chance pj to enter into a jumping operation. Once

the parent is selected, an additional parent is selected randomly. If the
two parents are the same, mutation operation will be performed. If the
parents are different, crossover operation will be performed. The new
individuals are inserted back to the parent pool to replace the original
parents.

3.5.4. Selection process for crossover or mutation operation
Based on the roulette wheel rule, a selection process is performed. It

starts with the calculation of the fitness value θ m genΦ( [ ], ) with (23),
relative fitness value θ m genΦ ( [ ], )r , and the cumulative fitness value

θ m genΦ ( [ ], )c for chromosome θ m[ ], which are defined as

=
∑
=

−θ m gen
θ m gen

θ m gen
Φ ( [ ], )

Φ( [ ], )

Φ( [ ], )
,r

m

M

0

1

(30)

∑=
=

θ m gen θ z genΦ ( [ ], ) Φ ( [ ], ).c
z

m

r
1 (31)

A random number p ∈ [0, 1] is generated and compared with
θ m genΦ ( [ ], )c , ∀m = [0, 2, …, M − 1]. If

−θ m genΦ ( [ 1], )c < p< θ m genΦ ( [ ], )c , θ m[ ] is selected to conduct
crossover or mutation operation. Chromosomes having higher fitness
values will have higher probability to survive and might appear re-
peatedly in the new population.

3.5.5. Crossover and mutation operations
The chromosomes selected by the roulette wheel are considered for

crossover and mutation operation. To determine whether a chromo-
some will undergo crossover operation, a random selection test (RST) is
executed. A random number ∈p [0, 1] is generated and compared with
pc. If p< pc, the chromosome is selected. Another chromosome is
chosen by the same procedure for the crossover operation as described
in Section 3.4.1.

The mutation operation, as described in Section 3.4.2, also starts
with an RST. A random number ∈p [0, 1] is generated and compared
with pm. If <p pm, the gene is selected for mutation. A random number
will be generated for the chosen gene with a value within the parameter
limits, K K[ , ]k k

min
( )

max
( ) , as described in Section 3.2.

The offspring chromosomes generated by the crossover and muta-
tion operations are added into the population pool. The two operations
are repeated until −M J( ) offspring chromosomes are produced.

3.6. RJGGA hyper-parameters

The exploration and exploitation rates of the RJGGA are governed
by (26) and (28), determined by ηc and ηm, respectively. The sweep is
performed for =η {0.1, 5, 20}c and =η {0.1, 5, 20}m . Fig. 11(a)–(i)
shows the convergence curves for ten initial populations with different
values of ηc and ηm.

The following trends can be observed from the convergence curves
in Fig. 11(a)–(i):

• parameter ηc is inversely related to the rate of convergence

• parameter ηm is inversely related to the number of sudden jumps,
presented as steps in the convergence curve

To achieve efficient utilization of computational resources, a con-
sistent convergence rate yielding a consistent set of final solutions
(despite different initialization) is desired. This is observed in the
Fig. 11 (a) when the =η 0.1c and =η 20m . These values correspond to
the exploration of the search space using crossover while the mutation
plays role in exploitation (Nawaz Ripon et al., 2007).

3.7. Optimization mechanism of m-PSO

Fig. 12 illustrates an execution flow of the m-PSO algorithm im-
plemented according to Wang et al. (2016).

The fitness value Φ evaluation in Section 3.3 and the optimization
procedure illustrated in Fig. 8 are the same as in the implementation of
RJGGA. In the following, only the highlighted part is described, cor-
responding to the modification of general PSO, which describes a me-
chanism to prevent premature convergence into local optima.

The mechanism is based on perturbing the globally best particle θG
(particle and chromosome are used interchangeably among PSO and GA
algorithms and follow the definition in Section 3.2), in a random di-
rection δ . The elements of a random vector δ i( ) are generated from a
normal distribution N μ σ( , )2 with =μ 0 and given variance σ2, such
that δ N σ~ (0, )i( ) 2 for = …i [1, , 6]. The perturbed particles θB

k are
generated by

= + −
−

θ θ K K δ2
2

( ) ,B
k

G
k

d

1
max min (32)

where =d 6.
Eq. (32) generates particles θB

k for = …k {1, 2, 3, } until any di-
mension i of θB

k is beyond search limits, such that ∉θ K K[ , ]B
i k i i( )

min
( )

max
( ) , or

until the predetermined amount Blimof particles θB is reached. If any
θB

i k( ) is beyond search limits before the amount of particles Blim is
reached, the counter k resets, new δ is generated and the mechanism
continues to generate additional particles θB, until the Blim is reached.

To investigate the performance of the m-PSO, the variance of the
normal distribution generating the elements of δ is set to =σ 0.13292 ,

Fig. 10. Flowchart of RJGGA.
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0.0719 and 0.0362, respectively. These values are obtained by solving

< =p N σ P(| (0, )| 0.5)d2 (33)

where =d 6, p (·) is a probability density function and P = 33%, 68%,
and 95%, respectively.

Eq. (33) guarantees that on average, P% of the perturbation vectors
δ have elements smaller than half of the search space. This means, with
a larger P, more particles θB are generated consecutively in the direc-
tion of the perturbation vector δ without reaching the search limits
K K[ , ]min max , leading to finer exploration. Conversely, a smaller value of

P leads to coarser exploration, with δ getting generated more often.

3.8. m-PSO Hyper-parameter

Fig. 13 illustrates the convergence curves for m-PSO with

population =M 25 particles, in accordance with (Wang et al., 2016),
and =B 75lim , which equals 100 evaluations of fitness function Φ per
generation, the same as the RJGGA implementation. This ensures the m-
PSO and RJGGA use similar amount of computational resources.

The red circles in Fig. 13 denote a perturbed particle θB generated
by (32), which became globally best particle θG in the following gen-
eration.

The following trends can be observed from the convergence curves
in Fig. 13(a)–(c):

• Sudden jumps in the convergence curves are related to a mechanism
producing particles θB.

• Flat regions in the convergence curves are related to the lack of
progress within the search, even when significantly better solutions
exist, suggesting an existence of local optima.

Fig. 11. (a)–(i) Convergence curves of RJGGA hyper-parameter sweep.
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• A trend can be observed where the rate of convergence and the final
fitness value correlate with growing value of P, suggesting finer
exploration is preferable.

4. Simulation and experimental results

Since the intrinsic parameters of PV panels cannot be explicitly
measured, the proposed diagnostic technique is firstly validated in
computer simulation and then experimentally verified with various
solar panels under different conditions.

4.1. Simulation validation

A simulated setup of a PV string with 6 series connected PV panels,
an inverter and the proposed DAM is simulated in PSIM as illustrated in
Fig. 14. The inverter is modeled as a resistor and set to drive the string
near the MPP, emulating the control strategy of a real inverter. The
intrinsic parameters of the PV panels used in simulation are given in
Table 1.

The simulation investigates the voltage and current of the PV string,
when the DAM3 performs the data acquisition of the panel P3. The
voltage and current series of the panels and the inverter before, during
and after the perturbation are illustrated in Figs. 15 and 16,

respectively.
The DAMs form a regular DPP configuration (Shenoy et al., 2013)

and perform DPP control when not performing the diagnostics.
The diagnostic process within the simulation is performed as fol-

lows:

• DAM3 is instructed to perform data acquisition from panel P3.

• DAM2 and DAM4 are instructed to curl the control to not interfere
with the perturbation process performed by DAM3.

• DAM1 and DAM5 are set to control P1 and P6, respectively, to follow a
constant voltage reference.

The DAM3 then induces large signal perturbation between the P3

Fig. 12. Flowchart of m-PSO.

Fig. 13. Convergence curves of m-PSO hyper-parameter sweep.

Fig. 14. Simulation setup.
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and P4, such that the voltage of P3 follows a sinusoidal reference signal.
The perturbation frequency is 1 kHz. The sampling frequency is
100 kHz. 5 periods of the terminal voltage and current of P3 are re-
corded. The measurement takes less than 7 ms, including the transition
periods.

The current passing through the solar string, as depicted in Fig. 16,
is seemingly unaffected by the perturbations local to the panels P3 and
P4. The reason is the phase of the perturbed currents, such that the
currents are almost anti-parallel, as can be seen in Fig. 16 and in detail
in Fig. 7.

Furthermore, the DAM1 and DAM5 impose an active control to P1
and P6, such that the panels follow a constant reference voltage. The
DAM1 routes a fraction of the current from P2 to P1 in order to boost the
voltage of P1. The same holds for P5 and P6 controlled by DAM5. This
leads to seemingly constant current through P1 and P6.

The simulated terminal voltage and current of P3 is used to estimate
the intrinsic parameters. The RJGGA algorithm is used to perform the
estimation with parameters ηc and ηm determined in Section 3.6. Tables
2 and 3 summarizes all RJGGA parameter values used throughout the
rest of the paper.

Table 4 shows the mean value and the standard deviation of the
extracted values of the parameters of 100 executions. Moreover, the
percentage errors of the mean values are compared with the parameters
in Table 1.

Referring to Figs. 15, 16 and Table 3, the following observations are
drawn:

• The perturbation is mostly localized at the panels adjacent to the
DAM performing the perturbation. This is because the currents of
the perturbed panels are approximately anti-parallel.

• Furthermore, the data acquisition poses negligible disruption to the

operation of the central inverter, since the data acquisition period is
shorter than the hold-up time of a common central inverter
(Kathiresan et al., 2017; Lai et al., 2014).

• The perturbation of the current centred around the IMPP is sufficient
for estimating intrinsic parameters describing the single-diode dy-
namic model.

• The estimation process of the intrinsic parameters converges after
20,000 generations using RJGGA and yields negligible error.

4.2. Experimental verification

Several experiments are performed using a DAM protype with
commercially available solar panels in controlled and outdoor condi-
tions. The panels are selected within similar power output range for
result comparison but with distinct way of achieving MPP.

To test the proposed method, the DAM is tested both on panels
achieving MPP at relatively high voltage and low current (commercially
available panels based on amorphous silicon technology – a-Si) and
panels achieving MPP at relatively low voltage but high current
(commercially available solar panels based on crystalline technology,
either monocrystalline, m-c-Si, or polycrystalline, p-c-Si). Table 5
summarizes the key information about the tested solar panels.

The group 1 is tested in a controlled conditions at different tem-
peratures. The group 2 is tested in outdoor conditions at different levels
of irradiation. The 2 different testing setups are illustrated in Fig. 17.

The testing setup in Fig. 17 consists of a pair of series connected
solar panels with a resistive load, driving the panels near the MPP. The
tested panels in group 1 are illuminated by 18 industrial reflectors,
model Philips QVF137, which gradually heat up the panels. The group 2
is illuminated by the Sun in outdoor conditions. The temperature is
monitored by thermocouples connected to digital thermometer BTM-

Fig. 15. Voltage series.
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4208SD forwarding the temperature data to Personal Computer (PC)
via UART-USB interface. PC runs a Matlab script, which monitors the
temperature and triggers the measurements by sending commands to
the Control Module via Ethernet.

Prototypes of a DAM and Control Module are built. The major
components used in the DAM prototype are listed in Table 6, Fig. 18

Fig. 16. Current series.

Table 2
RJGGA parameters.

Param. Value Param. Value

M 125 ηc 0.1
J 25 ηm 20
pj 0.15 genmax 20,000
pc 0.9 N1 50
pm 0.01 N2 500

Table 3
Search space of the estimated parameters.

Param. KMIN KMAX Param. KMIN KMAX

Iph (A) 0.1 5.0 Rsh (Ω) 100 5000
Io (A) 1 × 10−12 1 × 10−3 Csh (µF) 0.01 10
vT (V) 1 20 Rs (Ω) 0.05 20

Table 4
Mean value, standard deviation, and error of the estimated intrinsic parameters.

Param. µ σ2 ε (%) Param. µ σ2 ε (%)

Iph (A) 1.00 1.79 × 10−6 0 Rsh (Ω) 349.9 4.12 × 10−3 −0.029
Io (A) 9.74 × 10−6 3.24 × 10−9 −2.6 Csh (µF) 0.349 2.19 × 10−6 −0.289
vT (V) 5.98 1.64 × 10−4 −0.33 Rs (Ω) 4.03 5.06 × 10−4 0.75

Note:
µ – Mean value.
σ2 – Variance.
ε – Percentage error compared with that in Table 1.

Table 5
Main properties of the tested solar panels.

Panel group 1 group 2

manufacturer Sungen Siemens
model SG-HN80-GG SR100
type a-Si m-c-Si
# of panels 4 2
Voc at STC (V) 92 22
Isc at STC (A) 1.52 6.3
VMPP at STC (V) 70 17.7
IMPP at STC (A) 1.13 5.6
age (years) 20 10
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depicts the developed DAM prototype. The Control Module is based on
Raspberry PI 3 model B+.

4.2.1. Controlled condition tests
Group 1 consists of 4 solar panels P1 to P4. The panels are tested in

pairs in a chamber with controllable temperature. The panels are vi-
sually inspected, the following condition is observed:

• P1 and P4 are without visible damage.

• P2 and P3 have cracks stretching across the whole front glass pane.

The testing of the panels is performed as follows:

(1) The lights are turned on, causing the panels to gradually heat-up.
(2) The temperature of the panels is monitored by thermocouples.

(3) The PC triggers the measurement at pre-set temperature.
(4) The DAM is instructed to perturb the panel’s voltage and current by

the Control Module through ZigBee.
(5) The panel’s voltage and current are sampled and sent back to the

Control Module.
(6) The Control Module estimates the intrinsic parameters using

RJGGA.

The estimation algorithm converges after 20,000 generations,
taking approximately 960 s.

The panels P1 to P4 in group 1 are tested under two scenarios.

(a) Standard Testing Conditions (STC) at irradiation 1000 W/m2 and
25 °C.

(b) High temperature measurement at irradiation 1000 W/m2 and
80 °C.

The two scenarios are used to observe temperature dependency of
the intrinsic parameters. The panel voltage and current are sampled at
100 kHz.

The measured and pre-processed terminal voltages and currents of
panels in group 1 are shown in Fig. 19. The data are measured at STC.
The model predicted current, using the estimated parameters obtained
by RJGGA, is plotted for comparison.

The estimated intrinsic parameters are listed in Table 7 for the
temperature test at 25 °C and 80 °C.

Referring to Fig. 19 and the Table 7, the following observations are
drawn:

• DAM can successfully perturb the terminal voltages and currents of
a-Si panels and the Control Module can extract the intrinsic para-
meters with the sampled panel voltage and current.

• Comparison of the estimated parameters between the 2 temperature
tests reveals the temperature coefficients of the intrinsic parameters.
The Iph, I0, vT, Rs and Csh have positive temperature coefficient. The
Rsh has negative coefficient. This is in accordance with existing lit-
erature (Silva et al., 2017).

4.2.2. Comparative study of controlled condition tests
The performance of the solar panels is compared with the datasheet

values, consisting of the major I-V characteristic points (Voc, Isc, VMPP,
IMPP) and temperature coefficients (T. coef. Voc and Isc). Furthermore,
the fill-factor (FF) is calculated according to (34).

Fig. 17. Experimental measurement setup for group 1 and group 2.

Table 6
Components Used in the Diagnostic Modules.

Part Manufacturer Model number Specification

Microcontroller STM STM32F405RG 168 MHz,12-bit ADC
Op-Amp (V) TI INA826AIDR 1 MHz, 100 dB CMRR
Op-Amp (I) TI INA240A1 400 kHz, 120 dB CMRR
MOSFET STM STP26NM60N 600 V VDS
Inductor Eaton CTX150-5-52 150 µH, 7.7A
Capacitor Panasonic ECQ-E6105KF 1 µF, 630VDC
Gate driver Infineon IR2110SPBF up to 500 V, 2A
Wireless Mod. NXP MC1322V ZigBee

Fig. 18. Prototype of Data Acquisition Module.
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These values are compared with the values from a static I-V char-
acteristic, obtained by the single-diode model by neglecting the effect of
the Csh parameter, resulting in single-diode static model. The compar-
ison is summarized in Table 8.

Using the Table 8, the following observations are drawn:

• All solar panels P1 to P4 exhibit signs of aging in form of lower
maximum power PMPP. The prevalent cause of the power output
degradation is significant drop in the IMPP.

• The P4 falls within the guaranteed period of average power de-
gradation rate of −0.92%/year.

• The P1 shows higher than average power degradation rate of
−1.43%/year. While both P1 and P4 don’t show any visible signs of
external damage, P1 is known to be thermally-cycled more often
than P4. Thermal-cycling can lead to microscopic cracks within the
substrate (Van Mölken et al., 2012), which is a possible cause of
higher degradation rate.

• Both P2 and P3 with visible cracks across the front glass pane show
abnormally high degradation rates of −3.46 and −3.68%/year,
respectively. The cracks reaching from side-to-side possibly damage
the Transparent-Conductive-Oxide (TCO) layer, leading to sig-
nificant limitation of the passing current.

• The estimated VMPP for P3 and P4 is higher than the value provided
in the datasheet. This difference is still within the tolerances, which
the datasheet lists as± 10% for electrical parameters, such as VMPP,
and± 3% tolerance for power output characteristic.

4.2.3. Outdoor condition tests
Group 2 consists of 2 solar panels P5 and P6. The panels are tested in

outdoor conditions at different irradiation levels. The panels are vi-
sually inspected, the following condition is observed:

• P5 has slight signs of delamination and air bubbles across 8 solar
cells out of 36.

• P6 is without visible damage.

Fig. 19. Voltage and current series of (a) P1, (b) P2, (c) P3, (d) P4.

Table 7
Estimated intrinsic parameter of panels in group 1.

Param. Panel

P1 P2 P3 P4

25 (°C) 80 (°C) 25 (°C) 80 (°C) 25 (°C) 80 (°C) 25 (°C) 80 (°C)

Iph (A) 1.01 1.08 0.53 0.60 0.41 0.44 1.08 1.15
I0 (A) 2.11 × 10−8 1.33 × 10−5 2.08 × 10−11 1.50 × 10−9 1.37 × 10−11 6.92 × 10−8 1.62 × 10−9 9.16 × 10−7

vT (V) 5.15 6.32 3.67 3.81 3.81 4.66 4.49 5.11
Rsh (Ω) 424.63 309.32 420.75 316.66 644.44 475.73 459.42 355.69
Csh (µF) 0.356 0.361 0.226 0.297 0.162 0.170 0.266 0.298
Rs (Ω) 3.33 3.50 6.52 10.64 8.43 9.32 2.03 2.39
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The testing of the panels is performed as follows:

(1) The panels are placed facing the Sun until the temperature stabi-
lizes.

(2) The irradiation is measured by a short-circuit current of a calibrated
reference solar cell.

(3) The temperature of the panels is monitored by thermocouples.
(4) The DAM is instructed to perturb the panel’s voltage and current by

the Control Module through ZigBee.
(5) The panel’s voltage and current are sampled and sent back to the

Control Module.
(6) The Control Module estimates the intrinsic parameters using

RJGGA.

The panels are tested under two scenarios:

(a) Panels are facing the Sun at angle 0° (perpendicular to incoming
light), the irradiation is 750 W/m2 and the temperature 50 °C.

(b) Panels are tilted by approximately 48°, the irradiation is 500 W/m2

and the temperature 50 °C.

The two scenarios are used to observe the irradiation dependency of
the intrinsic parameters. The panel voltage and current are sampled at
100 kHz.

The measured and pre-processed terminal voltages and currents of
panels P5 and P6 are shown in the Fig. 20. The plotted data are mea-
sured at the irradiation of 750 W/m2. The model predicted current
using the estimated parameters is plotted for comparison.

The estimated intrinsic parameters of P5 and P6 are listed in Table 9.
Using the Fig. 20 and Table 9, the following observations are drawn:

• DAM can successfully perturb the terminal voltages and currents of
c-Si panels and the Control Module can extract the intrinsic para-
meters with the sampled panel voltages and currents.

• Comparison of the estimated parameters between the 2 different
irradiation tests reveal the irradiation coefficients of the intrinsic
parameters. The Iph, I0 and Csh have positive irradiation coefficient,

while Rsh has negative coefficient.

• The change in Rs has positive irradiation coefficient. The literature
(Silva et al., 2017) reports marginally negative coefficient. While
(Silva et al., 2017) investigates static I-V characteristics, this work
estimates the intrinsic parameters from large-signal AC character-
istic. Therefore, the discrepancy in findings may imply a non-
linearity of the PV panel impedance under AC operation. Further
research will be dedicated to interpreting Rs under static and dy-
namic excitation.

4.2.4. Comparative study of outdoor condition tests
The comparative study between the values reported in the datasheet

and the values obtained by the single-diode model is performed simi-
larly as outlined in Section 4.2.2. Due to outdoor conditions being
different from the STC values provided in the datasheet, the datasheet
values are recalculated to the outdoor conditions, irradiation 750 W/m2

and temperature 50 °C according to (IEC 60891 Ed.2, 2009).
Furthermore, the irradiation dependency of Voc and Isc are not in-

cluded in the datasheet, therefore they are interpolated from the I-V
reference characteristics in the datasheet. The comparison is summar-
ized in Table 10.

Using the Table 10, the following observations are drawn:

Table 8
Comparison of datasheet values with single-diode model prediction for group 1.

PMPP (W) Voc (V) Isc (A) VMPP (V) IMPP (A) T. coef. Voc (%/K) T. coef. Isc (%/K) FF (–)

Datasheet 80.00 92.00 1.39 70.50 1.13 −0.36 0.13 0.62
P1 57.08 89.86 1.00 72.78 0.78 −0.40 0.11 0.63
P2 24.57 86.14 0.52 70.63 0.34 −0.26 0.19 0.54
P3 21.06 90.31 0.40 74.95 0.28 −0.38 0.12 0.57
P4 65.23 90.32 1.07 74.96 0.87 −0.39 0.11 0.67

Fig. 20. Voltage and current series of (a) P5 and (b) P6.

Table 9
Estimated values of the intrinsic parameters of group 2.

Param. Panel

P5 P6

500 (W/m2) 750 (W/m2) 500 (W/m2) 750 (W/m2)

Iph (A) 2.99 4.47 3.11 4.66
I0 (A) 1.05 × 10−5 2.01 × 10−5 2.85 × 10−6 8.12 × 10−6

vT (V) 1.55 1.56 1.40 1.46
Rsh (Ω) 313.70 304.34 201.43 194.02
Csh (μF) 0.71 1.09 0.96 1.13
Rs (Ω) 0.10 0.27 0.13 0.24
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• Both solar panels P5 and P6 exhibit signs of power degradation in
form of lower maximum power output. The main cause is the
change in the IMPP, similarly to test group 1.

• The average power degradation rate for P5 is −0.34%/year, the P6
attains the rate of −0.75%/year. Compared to group 1, the group 2
has been stored at stable room temperature and humidity, which
prevents the panel from incurring damage.

• The panel P5, with slight but visible degradation in form of dela-
mination, is observed to have lower power output compared to
panel P6 of the same age but without visible degradation.

5. Conclusion

A novel method for data acquisition of the photovoltaic panel’s
dynamic I-V characteristic under operation and subsequent estimation
of the intrinsic parameters is presented. The method outcompetes the
common identification methods by acquiring the data online, without
directly impacting the power generation process. Furthermore, com-
pared to other approaches based on single-diode model, the identifi-
cation process yields both static and dynamic parameters from a single
measurement.

The simulation results are experimentally verified under controlled
and outdoor conditions on amorphous- and crystalline-silicon solar
panel technologies. The testing shows a Differential Power Processing
module with altered control software is capable of performing large-
signal voltage perturbations to acquire dynamic I-V characteristic of
two photovoltaic panels connected in series.

The data acquisition period of 7 ms is shorter than a hold-up-time of
a common central inverter, therefore it poses a negligible disruption to
the power generation process.

Furthermore, the perturbation is mostly localized at the panels ad-
jacent to the module performing the perturbation process, due to the
perturbed currents being almost anti-parallel, further minimizing the
impact on the power generation process.

Two evolutionary algorithms are utilized to investigate the diffi-
culty of the proposed parameter identification problem of nonlinear
model from the acquired time series. The m-PSO, which has been suc-
cessfully used for linear model identification tasks, shows presence of
multiple local optima. The RJGGA with adjustable exploration and
exploitation rate for single-objective optimization shows the problem
requires high exploration rate to obtain a consistent convergence. The
intrinsic parameter estimation of the dynamic single-diode model using
RJGGA converges after 20,000 generations with the population of 125
chromosomes.

Experimental testing of 6 solar panels shows degradation rates
correlate with observed damage. A 2 a-Si panels without physical da-
mage are diagnosed with degradation rates of−0.92 and−1.43%/year
in power output. A 2 a-Si panels with cracks across the front glass panel
are diagnosed with degradation rates of −3.46 and −3.68%/year. A
2 m-c-Si panels are diagnosed −0.34%/year and −0.75%/year, where
the latter case has 8 cells out of 36 affected by slight delamination.

The estimated intrinsic capacitance has positive correlation with the
observed degradation, establishing a possible indicator of the panel’s
health condition. Furthermore, the static parameters estimated from the
dynamic perturbations show the major cause of the power output de-
gradation is the decline in the short-circuit and MPP current.
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